MO STUDY OF MOLECULAR AND ELECTRONIC STRUCTURE OF 2,2-DIMETHYL-2*H*-PYRAN AND ITS ACYCLIC VALENCE ISOMERS

Stanislav BÖHM and Josef KUTHAN

Department of Organic Chemistry, Prague Institute of Chemical Technology, 166 28 Prague 6

Received December 10th, 1981

CNDO/2, MNDO, STO-3G, and 4-31G MO calculations of I to IIId molecules have been carried out. The effect of the presence of two methyl groups in the studied systems on their molecular and electronic structure and on valence isomerism (A) is discussed.

On the basis of the experimental facts known until now¹⁻⁸, it is obvious that the valence isomerism of 2*H*-pyran derivatives represented by the electrocyclic process (*A*) is strongly affected by the circumstance whether or not the substituents \mathbb{R}^1 to \mathbb{R}^3 are alkyl groups. In the case of the parent substances, *i.e.* $\mathbb{R}^1 = \mathbb{R}^2 = \mathbb{R}^3 = \mathbb{H}$ the equilibrium (*A*) is obviously shifted to the right¹⁻³ in accordance with the relative values of molecular energies calculated⁹ for zero point by means of the *ab initio* MO method using the 4-31G basis. On the contrary, the case in which \mathbb{R}^1 and $\mathbb{R}^2 \neq \mathbb{H}$ Head to the equilibria (*A*) shifted to the left, and the cyclic valence isomers can be isolated¹⁰. With the aim to contribute to elucidation of the logical presumption that the condition $\mathbb{R}^1 \neq \mathbb{H}$ could be a decisive factor for the preference of the heterocyclic valence isomers in the process (*A*), we decided to study in detail the equilibrium (*A*) for

the elementary case $R^1 = CH_3$ and $R^2 = R^3 = H$ using semiempirical and non--empirical MO approaches. The following results are based on systematic CNDO/2, STO-3G, and 4-31G calculations of the molecules of 2,2-dimethyl-2*H*-pyran (*I*), two conformers of (*Z*)-5-methyl-2,4-hexadienal (*IIa*, *b*), and four conformers of the corresponding (*E*)-isomer *IIIa*-*IIId*, and some additional MNDO calculations.

CALCULATIONS

All the non-empiric calculations were carried out with the use of Gaussian 76 program adapted for calculation of extensive molecular structures. The semiempirical optimizations of molecular

· ·

geometries were carried out with standard programs. The MNDO gradient optimization¹²⁻¹⁴ was used to verify whether or not the CNDO/2 gradient optimization¹¹ of the models *I* and *IIb* ($R = CH_3$) with various numbers of π electrons gives their molecular geometries with different relative accuracy. The calculation of 4–31G total energies only used the two-electron integrals in absolute value greater than 1. 10⁻⁵. For the structure *I*, $R = CH_3$, effect of this approximation on accuracy of the calculated total energy was investigated, and the two calculated values were found to differ by 0.22 kJ mol⁻¹ only. As the differences in total energies of the studied structures are greater for or us tudy.

To enable complete comparison of relative energies of all conformers of the acyclic valence isomers IIa-IIId (R = CH₃) with analogous unsubstituted conformers of 2,4-pentadienal, the results of ref.⁹ were now extended by full CNDO/2 gradient optimization of the non-substituted structures *IIb*, *IIIb-IIId* (R = H) and their non-empirical calculations. The calculated molecular geometries of the unsubstituted structures are given in Table I. In connection with the CNDO/2 gradient optimization of the substituted dienal structures it is worth mentioning that this procedure failed in the case of structure Ia (R = CH₃) where the obtained structure (according to its geometry parameters) cannot represent a stable chemical substance.

RESULTS AND DISCUSSION

Molecular Structure

Table II gives results of the CNDO/2 gradient optimization of structures *IIa*, *IIIa* to *IIId*. The calculated geometries of all the open forms IIa - IIId ($R = CH_3$) show

TABLE I

Structural parameters of the unsubstituted models IIb, IIIb-IIId obtained by the CNDO/2 gradient optimization. All the structures are fully planar, the bond lengths in pm, the bond angles in °

Bond	IIb	IIIb	IIIc	IIId	Bond angle	IIb	IIIb	IIIc	IIId
O—C(1)	126.5	126.4	126.4	126.4	O-C(1)-C(2)	126.1	125.9	125.7	125.9
C(1) - C(2)	142.9	143.0	143.1	143.0	C(1)—C(2)—C(3)	126-2	125.5	125.6	125.5
C(2)-C(3)	133.0	134.0	133.9	134.0	C(2)—C(3)—C(4)	128.3	128.1	129-5	129.3
C(3)—C(4)	143.6	143.6	143.6	143.6	C(3)—C(4)—C(5)	126-2	126.6	128.4	128.2
C(4)-C(5)	132.5	132.5	132.5	132.5	H(1) - C(1) - O	116.0	116.0	116-2	116.0
H(1) - C(1)	112.3	112.3	112.3	112.3	H(2)-C(2)-C(1)	114.8	115.0	115-1	115-1
H(2)-C(2)	111.8	111.8	111.9	111.8	H(3)-C(3)-C(2)	117-4	117.5	117.0	116.9
H(3)C(3)	112.1	112.1	112.1	112.1	H(4)—C(4)—C(3)	115-2	115.4	114.6	114.6
H(4)C(4)	112.0	112.0	112.0	112.0	H(a)-C(5)-C(4)	124.1	124.1	124.0	124.1
H(a)—C(5)	111.3	111.3	111.2	111.2	H(b)-C(5)-C(4)	124.5	124.4	124.5	124.5
H(b)-C(5)	111-3	111.3	111.3	111-3	H(a) - C(5) - H(b)	111.3	111.4	111.5	111.5

2,2-Dimethyl-2H-pyran	and	Its	Acyclic	Valence	Isomers

TABLE II

Comparison of the structural parameters of IIa, IIIa-IIId models ($\rm R=CH_3)$ obtained by CNDO/2 gradient optimization

Compound	Ha	IIIa	IIIb	IIIc	IIId
Bond lengths, pm					
O = C(1)	126:5	126.5	126.6	126.5	126.5
C(1) - C(2)	142.9	142.9	142.7	142.8	142.7
C(2) - C(3)	134.2	134.3	134.4	134.4	134.5
C(3) - C(4)	143.1	143.0	143.0	142.7	142.7
C(4) - C(5)	135.0	135-1	135-1	135.4	135.4
C(a) - C(5)	145.6	145.5	145.5	145.5	145.5
C(b)—C(5)	145.7	145.8	145.8	145.8	145.7
H(I) = C(I)	112.4	112.4	112.4	112.4	112.4
H(2) - C(2)	111.9	111.8	111.8	111.9	111.8
H(3) - C(3)	112.2	112.2	112.2	112.2	112.2
H(4) - C(4)	112.1	112.1	112.1	112.1	112.1
H - C(a)	112.0	112.0	112.0	112.2	112.2
H' - C(a)	112.1	112.1	112.1	112.1	112.1
H″—C(a)	112-1	112.1	112.1	112-1	112.1
HC(b)	112.1	112.0	112.1	112.1	112.1
H'-C(b)	112.0	112.0	112.0	112.0	112.0
H'' - C(b)	112-1	112.0	112.1	112.1	112.1
Bond angles (°)					
O - C(1) - C(2)	125.9	126.3	126.1	126.0	126.3
C(1) - C(2) - C(3)	126.7	125.0	125.0	125.5	125.0
C(2) - C(3) - C(4)	129.0	128.8	128.7	130-5	130.8
C(3) - C(4) - C(5)	129-1	128.6	128.6	129.3	129.3
C(a)-C(5)-C(4)	124.7	124.2	124.3	122.7	122.5
C(b)-C(5)-C(4)	121.6	122.0	121-8	120.7	120.8
H(1)-C(1)-O	115.9	116.0	115.8	116-0	115-9
H(2) - C(2) - C(1)	114.7	115-4	115.5	114.8	115-1
H(3)-C(3)-C(2)	116.6	116.7	116.6	116-3	115-9
H(4)-C(4)-C(3)	113.7	113-9	113.9	113-5	113.5
H-C(a)-C(5)	114.9	115.1	115-2	111-9	111-9
H'C(a)C(5)	111.2	111.0	110.9	113.9	114.0
H"C(3)C(5)	111.2	111.0	110.9	111.9	111.9
H—C(b)—C(5)	114.4	111.9	111.8	111.8	111.8
H'-C(b)-C(5)	111.4	114.1	114.2	114.5	114.5
H″—C(b)—C(5)	111.4	111.9	111.8	111.8	111.8
C(a)C(5)C(b)	113.7	113-9	113.9	116.6	116.7

1010

TABLE II

(Continued)

Compound	Ha	IIIa	IIIb	IIIc	IIId
Torsion angles (')					
HC(a)C(5)C(4)	0 0	0.0	0.0	59.8	59.7
H'C(a)C(5)C(4)	120.9	-121.0	-121.0	180 0	180.0
H"C(5)C(4)	120.9	121.0	121.0	- 59.8	- 59.7
H-C(b)-C(5)-C(4)	120.8	59.4	59.4	59-3	59-3
H'C(b)C(5)C(4)	0.0	180.0	180-0	180 0	180.0
H"C(b)C(5)C(4)	-120.8	59.4	59.4	- 59.3	- 59.3
C(a) - C(5) - C(4) - C(3)	0.0	0.0	0.0	0.0	0.0
C(b) - C(5) - C(4) - C(3)	180.0	180-0	180-0	180.0	180 0

" The other atoms lie in the same plane.

considerable similarity to the results obtained in analogous way for 2,4-pentadienal conformers⁹. Certain differences are only encountered in detail values of valence angles of skeletal hydrogen bonds and valence angle C(4)-C(5)-C(6). Thus, introduction of methyl substituent should not exert any distinct influence on molecular structures of the forms IIa - IIId ($R = CH_3$). To compare the effect of quality of the CNDO/2 wave function on the molecular structures obtained by the optimization, we carried out MNDO optimization of the heterocycle I ($R = CH_3$) and the most energy-preferred conformer IIb ($R = CH_3$). The structural parameters obtained by the two approaches are compared in Table III. The results show that the molecule of I ($R = CH_3$) exists, according to the results of CNDO/2 optimization procedure, in boat conformation similar to that of the unsubstituted 2H-pyran molecule⁹.

Introduction of 2,2-methyl groups also results in a certain lenghtening of O(1) - C(2)and C(2)-C(3) bonds. At the same time the valence angle O(1)-C(2)-C(3) is decreased, and C(6) - O(1) - C(2) is increased. Thus, the presence of the two methyl groups can be considered a stabilizing factor, as their introduction to 2 position removes, to some extent, the considerable deformation of the valence angle calculated for the tetrahedral centre in 2H-pyran⁹. Data of Table III reveal that the MNDO optimization gives more realistic, lower values of C-H bond lengths, the values of C--C bonds being, on the contrary, systematically higher. The value of CO bond of structure $I(R = CH_3)$ is higher, whereas that of $IIb(R = CH_3)$ is lower (Table III). As far as values of valence angles are concerned, the two methods give identical semiquantitative trends, differing only in detail values by maximum of $\pm 2^{\circ}$. A substantially different situation is seen in values of dihedral angles which affect most the overall shape of the molecules. In the case of the heterocycle $I (R = CH_3)$ the two optimizations give practically identical boat structures with deviations below $\pm 2^\circ$, whereas for the model IIb ($R = CH_3$) the CNDO/2 gradient optimization leads to fully planar conformation, and the result of MNDO optimization rather reminds of a distorted belix.

Energy Characteristics

Table IV compares the calculated total and relative energies (E_{tot} and E_{rel}) for all the types of bases of AOs. The values of CNDO/2, STO-3G, and 4-31G total energies were used for prediction of thermodynamic stability of structures I-III. Similar to the unsubstituted substances9, CNDO/2 and STO-3G give qualitatively different edicts, preferring 2,2-dimethyl-2H-pyran (I) to all conformers of 5-methyl-2,4-hexadienal (IIa - IIId). CNDO/2 presumes the following stability order: I > IIb > IIa >> IIIb > IIId > IIIa > IIIc. The STO-3G calculation leads to similar conclusions, the structure IIIa being, however, preferred: I > IIb > IIa > IIIa > IIIb > IIId >> IIIc. In spite of detailed differences in the order, the energy difference is obviously greater for the valence isomerism $I \rightleftharpoons II$ or III than for $II \rightleftharpoons III$. On the contrary, the 4-31G total energies give the following stability sequence: IIb > IIIb > IIIa >> IIa > I > IIId > IIIc, hence the isomerism (A) can, in our case, be formulated most probably as $IIb \rightleftharpoons IIa \rightleftharpoons I$ in favour of the open forms II. Similarly, the MNDO total energies of the MNDO-optimized models prefer structure IIb $(R = CH_3)$ to cyclic structure $I(R = CH_3)$ by 5.90 kJ mol⁻¹. The different results of 4-31G and MNDO calculations vs those of CNDO/2 and STO-3G are obviously due to insufficient diffusity of the latter bases of AOs for description of π structure mainly of the conformers of 5-methyl-2,4-hexadienal (IIa-IIId). From the 4-31G values of relative energies of I to III structures it follows, of course, that energy difference between the open forms IIa - IIId (R = CH₃) and pyran skeleton I (R = CH₃) is distinctly lower than that between the corresponding non-methylated compounds?.

The structural på are given in pm,	the angles a	models I and are in degree	d <i>IIb</i> (R = CH ₃) obtaine	ed by CNDO)/2 and MNI	OO gradient optimization. Th	ie values of b	ond lengths
Bond	CNDO/2	MNDO	Valence angle	CNDO/2	MNDO	Torsion angle	CNDO/2	OGNM
			2,2-Din	nethyl-2 <i>H</i> -py	rran (I)			
0(1)—C(2)	140-4	143-0	O(1)-C(2)-C(3)	115-8	113-0	0(1)-C(2)-C(3)-C(4)	2.8	-1-0
C(2)-C(3)	147-1	153-1	C(2)C(3)C(4)	123-2	122-4	C(2)-C(3)-C(4)-C(5)	0.3	-0.3
C(3)—C(4)	133-6	135-3	C(3)—C(4)—C(5)	118-3	119-2	C(3)-C(4)-C(5)-C(6)	-1.5	03
C(4)-C(5)	143-8	145-6	C(4)-C(5)-C(6)	118-0	118-9	C(4)—C(5)—C(6)—O(1)	-0.5	1-0
C(5)—C(6)	133.5	136-3	C(5)-C(6)-O(1)	126.1	123-6	C(5)-C(6)-O(1)-C(2)	3.8	- 2.5
C(6)O(1)	136.0	135-4	C(6)-O(1)-C(2)	118-6	122-7	C(6)-O(1)-C(2)-C(3)	4-6	2.3
C(a)C(2)	147-9	156.5	C(a)-C(2)-O(1)	108-2	106.8	C(a)-C(2)-O(1)-C(6)	115-1	-118-4
C(b)-C(2)	147-9	156.5	C(b)-C(2)-O(1)	107-5	106-7	C(b)-C(2)-O(1)-C(6)	-124-5	123-0
H(3)C(3)	111.7	109-0	H-C(a)-C(2)	113-2	107-6	H-C(a)-C(2)-O(1)	59-5	- 58-3
H(4)—C(4)	111.7	109-0	H'C(a)C(2)	112-3	107-6	H'C(a)C(2)O(1)	$-60 \cdot 1$	62-3
H(5)-C(5)	111-4	108-7	H"C(a)C(2)	112-4	107-5	H"-C(a)-C(2)-O(1)	179-9	-178-2
H(6)C(6)	111-9	109-7	HC(b)C(2)	112-5	111-4	H-C(b)-C(2)-O(1)	66.1	-65-9
HC(a)	112-2	110-8	H'C(b)C(2)	113-0	111-9	H'-C(b)-C(2)-O(1)	-53.5	54-7
H'-C(a)	112-1	110-9	H"-C(b)-C(2)	112.4	110-5	H"-C(b)-C(2)-O(1)	-173-7	174-6
H"C(a)	111-9	110-9	H(3)C(3)C(4)	121.6	121-6	H(3)-C(3)-C(4)-C(5)	-179-8	179-7
H-C(b)	112-1	110-8	H(4)C(4)C(5),	119-3	118-5	H(4)-C(4)-C(5)-C(6)	178-6	-179.9
H'C(b)	112-1	110 8	H(5)-C(5)-C(6)	121-3	121-6	H(5)-C(5)-C(6)-O(1)	179-6	-179.6
H"C(b)	111-9	110.9	H(6)-C(6)-O(1)	109-0	111-8	H(6)-C(6)-O(1)-C(2)	-176.7	177-6

TABLE III

51:3 0:9 -112:7 2:4	-178.0 -178.0 -170.1	178·2 69·0 0·5	120-6 	0-4 120-5 48-3	1.0 –
0-0 180-0	180-0 180-0 180-0	180-0 0-0 0-0	-120-9 120-9 120-8	0-0 -120-8 0-0	000
$\begin{array}{c} C(3)-C(2)-C(1)-O\\ C(4)-C(3)-C(2)-C(1)\\ C(5)-C(4)-C(3)-C(2)\\ C(5)-C(4)-C(3)-C(2)\\ C(2)-C(4)-C(3)-C(2)\\ C(2)-C(4)-C(3)-C(2)\\ C(3)-C(4)-C(3)-C(2)\\ C(3)-C(3)-C(3)-C(3)\\ C(3)-C(3)-C(3)-C(3)\\ C(3)-C(3)-C(3)-C(3)\\ C(3)-C(3)-C(3)-C(3)\\ C(3)-C(3)-C(3)-C(3)\\ C(3)-C(3)-C(3)-C(3)\\ C(3)-C(3)-C(3)-C(3)\\ C(3)-C(3)-C(3)-C(3)\\ C(3)-C(3)-C(3)-C(3)\\ C(3)-C(3)-C(3)-C(3)-C(3)\\ C(3)-C(3)-C(3)-C(3)-C(3)\\ C(3)-C(3)-C(3)-C(3)-C(3)\\ C(3)-C(3)-C(3)-C(3)-C(3)\\ C(3)-C(3)-C(3)-C(3)-C(3)\\ C(3)-C(3)-C(3)-C(3)-C(3)\\ C(3)-C(3)-C(3)-C(3)-C(3)-C(3)\\ C(3)-C(3)-C(3)-C(3)-C(3)-C(3)\\ C(3)-C(3)-C(3)-C(3)-C(3)-C(3)\\ C(3)-C(3)-C(3)-C(3)-C(3)-C(3)-C(3)\\ C(3)-C(3)-C(3)-C(3)-C(3)-C(3)-C(3)\\ C(3)-C(3)-C(3)-C(3)-C(3)-C(3)-C(3)-C(3)-$	C(a) - C(b) - C(c) - C(d) - C(c) + H(1) - C(1) - C(2) - C(c) + H(2) - C(2) - C(1) - O	H(3)-C(3)-C(2)-C(1) H(4)-C(4)-C(3)-C(2) H-C(4)-C(5)-C(2)	H'C(a)C(5)C(4) H"C(a)C(5)C(4) HC(b)C(5)C(4)	H'-C(b)-C(5)-C(4) H''-C(b)-C(5)-C(4) U(2)	H(3)-C(3)-C(2)-H(2)
125-6 128-5 127-7	124-1 124-1 120-7	112.5	113-3	110-8 112-8	115-2
126-4 125-5 127-7	129-2 124-8 121-5	115-2	111-2 111-2	114-4 111-4	113-7
$\begin{array}{c} 0 - C(1) - C(2) \\ C(3) - C(2) - C(1) \\ C(4) - C(3) - C(2) \\ C(4) - C(3) - C(2) \\ C(2) - C(2) $	C(5) - C(4) - C(3) C(a) - C(5) - C(4) C(b) - C(5) - C(4) H(1) - C(1) - C(2)	H(2)-C(2)-C(1) H(3)-C(3)-C(2) H(4)-C(4)-C(1)	H'-C(a)-C(5) H'-C(a)-C(5) H'-C(a)-C(5)	H—C(b)—C(5) H'—C(b)—C(5)	H
122-2 148-8 134-7	147-2 135-5 150-9	111-2 109-6 108-8	109-8 110-8 111-0	0-111	111.0
126-6 142-7 134-2	143-1 135-1 145-6	112-5 111-6 111-6	112:2 112:0 112:1	112-1 112-1	112-0
0—C(1) C(1)—C(2) C(2)—C(3)	C(3)C(4) C(4)C(5) C(a)C(5)	H(1)-C(1) H(2)-C(2) H(2)-C(2)	H(4)-C(3) H(4)-C(4) H-C(a) H'-C(a)	H"—C(a) H—C(b)	H'C(b) H"C(b)

5-Methyl-2,4-hexadienal (IIb)

TABLE IV

111 ÷ ¢ • 1 2 + 0 + J 0 ------C

		- E	tot			E _{rel} , kJ	mol ⁻¹	
Compound	STO-3G ^b	4-31G ^c	STO-3G ^{b,d}	$4-31G^{b,d}$	CNDO/2	STO-3G ^b	4-31G ^c	$4-31 G^{b.d}$
I	341-437536	345-195989 345-195903 ^b	264-285447	267-235607	0-0	0.0	11·5 11·7 ^b	27-1
IIa	341-388163	345-199082	264.231493	267-241367	651-5	129-8	3.4	11.8
911	341-388518	345-200356	264-232064	267-242993	644.4	128-8	0.0	7.6
IIIa	341-388017	345-199859	264.234765	267-245916	657-6	130-1	1-3	0.0
q_{III}	314-387518	345-199947	264.234145	267-245289	625-8	131-5	١٠١	1.6
IIIc	341-363065	345-174306	264-231891	267·240824	658-9	195-7	68.5	13-4
p_{III}	341-378484	345-189097	264-231089	267-239834	655-4	155-2	29.6	16.0

à 50

Table V gives values of 4-31G energies of frontier orbitals of the models I-III $(R = CH_3)$. Compared with the non-substituted molecule of 2H-pyran itself and with its non-cyclic valence isomers⁹, introduction of 2.2-dimethyl groups in the derivative I only results in non-distinct increase of both the HOMO and LUMO energies. Analogous comparison of energy values of frontier MOs of 5-methyl-2,4-hexadienal conformers IIa-IIId with those of 2,4-pentadienal itself⁹ shows a more distinct lowering of the HOMO energies and increase of the LUMO energies. The molecule I tends to electron-donor interactions, and all the conformers IIa-IIId tend to electron-acceptor interactions, which is similar to the behaviour of the unsubstituted system. The nodal properties of the frontier MOs of all the systems remain practically identical with those of the non-substituted compounds9. The HOMO of the pyran model I is of pseudo- π -type with distinct bonding participation of 2s orbitals of the both methyl carbon atoms with nodal planes perpendicular to the bonds O(1) - C(2), C(2) - C(3), C(4) - C(5), C(6) - O(1), which indicates C-hyperconjugation. Similarly, the LUMO is again of π -type with analogous antibonding antisymmetrical participation of 2s orbitals of the methyl carbon atoms and with nodal planes perpendicular to the bonds C(2)-C(3), C(3)-C(4), C(5)-C(6), C(6)-O(1). Table VI gives the expansion coefficients of AOs in the HOMO and the LUMO of the model compound $I(R = CH_3)$ along with those of the energetically most favourable conformer $IIb (\mathbf{R} = \mathbf{CH}_3).$

Charge Distribution

The values of STO-3G σ and π charge populations of the open forms IIa - IIId(R = CH₃) show a rather non-distinct dependence on conformation relations. All the structures exhibit characteristical alternation of the π charges along the skeleton, whereas the charges σ are always negative except for C(1) centre. Hence, it can be

							`	3,
_	Compound	Ι	Ha	IIb	IIIa	IIIb	IIIc	IIId
	номо ^ь	7.79	8.69	8.48	8.60	8.50	8.56	8.54
	LUMO ^b	3.62	1.60	1.61	1.59	1.62	1.59	1.54

TABLE V The 4-31G energies⁴ of the frontier orbitals of structures I-III (R = CH₃)

^{*a*} The calculation involved the two-electron integrals higher than 1.10⁻⁵; ^{*b*} the values are given in dimensionless units $E = E_n/h$, where h = 96.4867 kJ mol⁻¹.

•)

stated that introduction of the two methyl groups in C(5) position of 2,4-pentadienal causes no distinct change in character of charge population. A somewhat different situation is presented in Table VII for 4–31G model of the heterocycle I ($R = CH_3$). In this case obviously the introduction of methyl groups in 2 position changes the O(1)–C(2) bond strength, because the original considerably repulsive interaction of π charges at the O(1) and C(2) centres of the unsubstituted skeleton⁹ is transformed into an attractive interaction of negative π charge at O(1) and positive π charge

TABLE VI

LCAO expansions for the frontier 4-31G MOs of *I* and *IIb* molecules^{*a*}. Only given are the members with the expansion coefficients above 0.1; meaning of the symbols for AOs: $p_z = 2p_z(I)$, $p'_z = 2p_z(O)$, S = 2s(I), S' = 2s(O), s = 1s(I), s' = 1s(O)

номо	LUMO
2,2-Dimethyl	-2 <i>H</i> -pyran (<i>I</i>)
$\begin{array}{c} 0.2298 \ p_z O(1) + \ 0.2457 \ p'_z O(1) \\ - \ p_z C(2) \\ 0.2724 \ \rho_z C(3) + \ 0.2898 \ p'_z C(3) \\ 0.1932 \ p_z C(4) + \ 0.2229 \ p'_z C(4) \\ - \ 0.2583 \ p_z C(5) - \ 0.2980 \ p'_z C(5) \\ - \ 0.2567 \ p_z C(6) - \ 0.2340 \ p'_z C(6) \\ - \ 0.1348 \ SC(a) \\ 0.1278 \ SC(b) \end{array}$	$\begin{array}{c} 0.1380 \ \rho_z O(1) + 0.1845 \ \rho_z'O(1) \\ \rho_z C(2) \\ - 0.2828 \ \rho_z C(3) - 0.5270 \ \rho_z'C(3) \\ 0.1658 \ \rho_z C(5) + 0.4152 \ \rho_z'C(4) \\ 0.1658 \ \rho_z C(5) + 0.2975 \ \rho_z'C(5) \\ - 0.3006 \ \rho_z C(6) - 0.5063 \ \rho_z'C(6) \\ - 0.1574 \ SC(a) \\ - 0.1479 \ SC(b) \\ - 0.1829 \ sH(a) \\ 0.1822 \ sH(b) \end{array}$
5-Methyl-2,4-h	exadienal (11b)
$\begin{array}{rl} 0.1791 \ \rho_z O & + \ 0.1698 \ p'_z O \\ - \ \rho_z C(1) \\ - \ 0.2776 \ \rho_z C(2) & - \ 0.3092 \ \rho'_z C(2) \\ - \ 0.138 \ \rho_z C(3) & - \ 0.1298 \ \rho'_z C(3) \\ 0.2589 \ \rho_z C(4) + \ 0.27174 \ \rho'_z C(4) \\ 0.2617 \ \rho_z C(5) + \ 0.2717 \ \rho'_z C(5) \\ - \ SC(a) \\ SC(b) \end{array}$	$\begin{array}{c} -0.2315 \ p_z O & -0.2934 \ p_z' O \\ 0.2294 \ p_z C(1) + 0.2883 \ p_z' C(1) \\ 0.1688 \ p_z C(2) + 0.2933 \ p_z' C(2) \\ -0.2727 \ p_z C(3) - 0.4351 \ p_z' C(3) \\ -0.0789 \ p_z C(4) - 0.1183 \ p_z' C(4) \\ 0.2506 \ p_z C(5) + 0.3585 \ p_z' C(5) \\ SC(a) \\ - SC(b) \\ -0.1632 \ sH(a) \\ -0.1324 \ sH(b) \\ 0.1324 \ sH''(b) \end{array}$

^a The CNDO/2-optimized geometries.

1016

TABLE	VII											
Comparis lower spec	on of total, cifications of	σ and π S	TO-3G char relate to cor	ge distributi npounds I a	ons of the C ind <i>IIb</i> , resp	CNDO/2-01 ectively	otimized mo	dels of str	uctures I a	nd <i>IIb</i> (R	= CH ₃). (pper and
Qi	0(1)	C(2) C(1)	C(3) C(2)	C(4) C(3)	C(5) C(4)	C(6) C(5)	Cu	H(3) H(1)	H(4) H(2)	H(5) H(3)	H(6) H(4)	ч
	and the second se				2,2-Dimet	hyl-2 <i>H</i> -pyr	an (1)					
Total	-0-255	0 149	0.068	-0.060	-0.116	0.088	-0.159	0.055	0.061	0.060	0.072	0.054
σ	0.598	0.123	-0.038	-0.063	-0.002	0.066	-0.187	I	1	ł	1	i
н	-0.853	0.026	-0.029	0.003	-0.114	0-022	0 029	1	l	I	1	ł
					5-Methyl-2,	,4-hexadien	al (<i>IIb</i>)					
Total	-0.213	0-111	-0.096	-0.023	-0.084	0-035	-0.167	0.043	0.060	0.059	0-079	0-061
Ь	-0.077	0.030	-0.034	-0.099	-0.044	-0.024	-0.153	í	ł	I	I	ļ
πе	0-136	0 081	-0.062	0-076	-0.040	0-059	-0.014	I	ł	1000	I	-
^a Average	value for th	ie two met	thyl groups.									

at C(2). On the contrary, however, the introduction of two methyl groups in 2 position results in increased repulsion interaction of σ -charge densities of these centres, hence the final effect on the O(1)--C(2) bond strength is a result of mutual compensation of σ and π charge distributions. The introduction of two methyl groups in C(2) position of 2*H*-pyran skeleton can be considered a rather stabilizing factor which could shift the equilibrium (*A*) in favour of the cyclic isomer. In contrast to unequivocal preference of structure *I* (R = CH₃) following from the less perfect CNDO/2 and STO-3G calculations, however, the energy data obtained by the more perfect MNDO and 4-31G procedures do not confirm this preference and, moreover, show substantially lower energy differences between the individual forms of the considered valence isomer *I*-*III* (R = CH₃). Furthermore, of course, any more precise prognosis would require additional calculation of corrections for correlation energy and zero point.

REFERENCES

- 1. Sarel S., Rivlin J.: Isr. J. Chem. 1, 221 (1963).
- 2. Sarel S., Rivlin J.: Tetrahedron Lett. 1965, 821.
- 3. Anderson J. C., Lindsay D. G., Reese C. B.: Tetrahedron 20, 2091 (1964).
- 4. Lillya C. P., Kluge A. F.: J. Org. Chem. 36, 1977 (1971).
- 5. Royer J., Dreux J.: Tetrahedron Lett. 1968, 5589.
- 6. Kluge A. F., Lillya C. P.: J. Org. Chem. 36, 1988 (1971).
- 7. Royer J., Dreux J.: Bull. Soc. Chim. Fr. 2, 707 (1975).
- 8. Marvell E. N., Gosink T. A.: J. Org. Chem. 37, 3036 (1972).
- 9. Böhm S., Kuthan J.: This Journal 40, 759 (1980).
- 10. Duperrier A., Moreau M., Dreux J.: Bull. Soc. Chim. Fr. 9, 2307 (1975).
- 11. Panciř J.: Theor. Chim. Acta 29, 21 (1973).
- 12. Dewar M. J. S., Thiel W.: J. Amer. Chem. Soc. 99, 4899, 4907 (1977).
- 13. Fletcher R., Powell M. J. D.: Comput J. 6, 163 (1963).
- 14. Davidon W. C.: Comput. J. 10, 406 (1968).

Translated by J. Panchartek.